Sudiro, C.; Guglielmi, F.; Hochart, M.; Senizza, B.; Zhang, L.; Lucini, L.; Altissimo, A.
Agronomy 2022, 12, 764
Biostimulants are gaining increasing interest because of their ability to provide a green and effective strategy towards sustainable crop production. Nonetheless, their mode of action remains often unknown. The object of this work was to unravel the mechanisms through which 4-Vita, a biostimulant plant extract, can mitigate drought stress in tomato. To this aim, tomato plants were treated with two foliar applications of 4-Vita and drought stress imposed to both treated and control plants. Phenomics investigations were coupled to mass spectrometric untargeted metabolomics, and raw data were elaborated by multivariate statistics and pathway analysis. The biostimulant elicited a broad reprogramming of the tomato’s secondary metabolism, including its phytohormones profile, corroborating an improved ability to cope with drought stress. A series of mechanisms could be identified in response to the biostimulant treatment under drought, pointing to the preservation of photosynthetic machinery functionality. The modulation of thylakoid membrane lipids, the increase in xanthins involved in ROS detoxification, and the modulation of chlorophylls synthesis could also be observed. Overall, a series of coordinated biochemical mechanisms were elicited by the biostimulant treatment, supporting the increased resilience to drought stress in tomato
FOR MORE INFORMATION ON THIS TOPIC CONTACT THE AUTHOR OF THE PUBLICATION:
Cristina Sudiro